homekit/include/py/syncleo/protocol.py
2023-06-10 23:20:37 +03:00

1170 lines
39 KiB
Python

# Polaris PWK 1725CGLD "smart" kettle python library
# --------------------------------------------------
# Copyright (C) Evgeny Zinoviev, 2022
# License: BSD-3c
from __future__ import annotations
import logging
import socket
import random
import struct
import threading
import time
from abc import abstractmethod, ABC
from enum import Enum, auto
from typing import Union, Optional, Dict, Tuple, List
from ipaddress import IPv4Address, IPv6Address
import cryptography.hazmat.primitives._serialization as srlz
from cryptography.hazmat.primitives.asymmetric.x25519 import X25519PrivateKey, X25519PublicKey
from cryptography.hazmat.primitives import ciphers, padding, hashes
from cryptography.hazmat.primitives.ciphers import algorithms, modes
ReprDict = Dict[str, Union[str, int, float, bool]]
_logger = logging.getLogger(__name__)
PING_FREQUENCY = 3
RESEND_ATTEMPTS = 5
ERROR_TIMEOUT = 15
MESSAGE_QUEUE_REMOVE_DELAY = 13 # after what time to delete (and pass False to handlers, if needed) messages with phase=DONE from queue
DISCONNECT_TIMEOUT = 15
def safe_callback_call(f: callable,
*args,
logger: logging.Logger = None,
error_message: str = None):
try:
return f(*args)
except Exception as exc:
logger.error(f'{error_message}, see exception below:')
logger.exception(exc)
return None
# drop-in replacement for java.lang.System.arraycopy
# TODO: rewrite
def arraycopy(src, src_pos, dest, dest_pos, length):
for i in range(length):
dest[i + dest_pos] = src[i + src_pos]
# "convert" unsigned byte to signed
def u8_to_s8(b: int) -> int:
return struct.unpack('b', bytes([b]))[0]
class PowerType(Enum):
OFF = 0 # turn off
ON = 1 # turn on, set target temperature to 100
CUSTOM = 3 # turn on, allows custom target temperature
# MYSTERY_MODE = 2 # don't know what 2 means, needs testing
# update: if I set it to '2', it just resets to '0'
# low-level protocol structures
# -----------------------------
class FrameType(Enum):
ACK = 0
CMD = 1
AUX = 2
NAK = 3
class FrameHead:
seq: Optional[int] # u8
type: FrameType # u8
length: int # u16. This is the length of FrameItem's payload
@staticmethod
def from_bytes(buf: bytes) -> FrameHead:
seq, ft, length = struct.unpack('<BBH', buf)
return FrameHead(seq, FrameType(ft), length)
def __init__(self,
seq: Optional[int],
frame_type: FrameType,
length: Optional[int] = None):
self.seq = seq
self.type = frame_type
self.length = length or 0
def pack(self) -> bytes:
assert self.length != 0, "FrameHead.length has not been set"
assert self.seq is not None, "FrameHead.seq has not been set"
return struct.pack('<BBH', self.seq, self.type.value, self.length)
class FrameItem:
head: FrameHead
payload: bytes
def __init__(self, head: FrameHead, payload: Optional[bytes] = None):
self.head = head
self.payload = payload
def setpayload(self, payload: Union[bytes, bytearray]):
if isinstance(payload, bytearray):
payload = bytes(payload)
self.payload = payload
self.head.length = len(payload)
def pack(self) -> bytes:
ba = bytearray(self.head.pack())
ba.extend(self.payload)
return bytes(ba)
# high-level wrappers around FrameItem
# ------------------------------------
class MessagePhase(Enum):
WAITING = 0
SENT = 1
DONE = 2
class Message:
frame: Optional[FrameItem]
id: int
_global_id = 0
def __init__(self):
self.frame = None
# global internal message id, only useful for debugging purposes
self.id = self.next_id()
def __repr__(self):
return f'<{self.__class__.__name__} id={self.id} seq={self.frame.head.seq}>'
@staticmethod
def next_id():
_id = Message._global_id
Message._global_id = (Message._global_id + 1) % 100000
return _id
@staticmethod
def from_encrypted(buf: bytes, inkey: bytes, outkey: bytes) -> Message:
_logger.debug(f'Message:from_encrypted: buf={buf.hex()}')
assert len(buf) >= 4, 'invalid size'
head = FrameHead.from_bytes(buf[:4])
assert len(buf) == head.length + 4, f'invalid buf size ({len(buf)} != {head.length})'
payload = buf[4:]
b = head.seq
j = b & 0xF
k = b >> 4 & 0xF
key = bytearray(len(inkey))
arraycopy(inkey, j, key, 0, len(inkey) - j)
arraycopy(inkey, 0, key, len(inkey) - j, j)
iv = bytearray(len(outkey))
arraycopy(outkey, k, iv, 0, len(outkey) - k)
arraycopy(outkey, 0, iv, len(outkey) - k, k)
cipher = ciphers.Cipher(algorithms.AES(key), modes.CBC(iv))
decryptor = cipher.decryptor()
decrypted_data = decryptor.update(payload) + decryptor.finalize()
unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
decrypted_data = unpadder.update(decrypted_data)
decrypted_data += unpadder.finalize()
assert len(decrypted_data) != 0, 'decrypted data is null'
assert head.seq == decrypted_data[0], f'decrypted seq mismatch {head.seq} != {decrypted_data[0]}'
# _logger.debug('Message.from_encrypted: plaintext: '+decrypted_data.hex())
if head.type == FrameType.ACK:
return AckMessage(head.seq)
elif head.type == FrameType.NAK:
return NakMessage(head.seq)
elif head.type == FrameType.AUX:
# TODO implement AUX
raise NotImplementedError('FrameType AUX is not yet implemented')
elif head.type == FrameType.CMD:
type = decrypted_data[1]
data = decrypted_data[2:]
cl = UnknownMessage
subclasses = [cl for cl in CmdIncomingMessage.__subclasses__() if cl is not SimpleBooleanMessage]
subclasses.extend(SimpleBooleanMessage.__subclasses__())
for _cl in subclasses:
# `UnknownMessage` is a special class that holds a packed command that we don't recognize.
# It will be used anyway if we don't find a match, so skip it here
if _cl == UnknownMessage:
continue
if _cl.TYPE == type:
cl = _cl
break
m = cl.from_packed_data(data, seq=head.seq)
if isinstance(m, UnknownMessage):
m.set_type(type)
return m
else:
raise NotImplementedError(f'Unexpected frame type: {head.type}')
def pack_data(self) -> bytes:
return b''
@property
def seq(self) -> Union[int, None]:
try:
return self.frame.head.seq
except:
return None
@seq.setter
def seq(self, seq: int):
self.frame.head.seq = seq
def encrypt(self, outkey: bytes, inkey: bytes, token: bytes, pubkey: bytes):
assert self.frame is not None
data = self._get_data_to_encrypt()
assert data is not None
b = self.frame.head.seq
i = b & 0xf
j = b >> 4 & 0xf
outkey = bytearray(outkey)
l = len(outkey)
key = bytearray(l)
arraycopy(outkey, i, key, 0, l-i)
arraycopy(outkey, 0, key, l-i, i)
inkey = bytearray(inkey)
l = len(inkey)
iv = bytearray(l)
arraycopy(inkey, j, iv, 0, l-j)
arraycopy(inkey, 0, iv, l-j, j)
cipher = ciphers.Cipher(algorithms.AES(key), modes.CBC(iv))
encryptor = cipher.encryptor()
newdata = bytearray(len(data)+1)
newdata[0] = b
arraycopy(data, 0, newdata, 1, len(data))
newdata = bytes(newdata)
_logger.debug('frame payload to be encrypted: ' + newdata.hex())
padder = padding.PKCS7(algorithms.AES.block_size).padder()
ciphertext = bytearray()
ciphertext.extend(encryptor.update(padder.update(newdata) + padder.finalize()))
ciphertext.extend(encryptor.finalize())
self.frame.setpayload(ciphertext)
def _get_data_to_encrypt(self) -> bytes:
return self.pack_data()
class AckMessage(Message, ABC):
def __init__(self, seq: Optional[int] = None):
super().__init__()
self.frame = FrameItem(FrameHead(seq, FrameType.ACK, None))
class NakMessage(Message, ABC):
def __init__(self, seq: Optional[int] = None):
super().__init__()
self.frame = FrameItem(FrameHead(seq, FrameType.NAK, None))
class CmdMessage(Message):
type: Optional[int]
data: bytes
TYPE = None
def _get_data_to_encrypt(self) -> bytes:
buf = bytearray()
buf.append(self.get_type())
buf.extend(self.pack_data())
return bytes(buf)
def __init__(self, seq: Optional[int] = None):
super().__init__()
self.frame = FrameItem(FrameHead(seq, FrameType.CMD))
self.data = b''
def _repr_fields(self) -> ReprDict:
return {
'cmd': self.get_type()
}
def __repr__(self):
params = [
__name__+'.'+self.__class__.__name__,
f'id={self.id}',
f'seq={self.seq}'
]
fields = self._repr_fields()
if fields:
for k, v in fields.items():
params.append(f'{k}={v}')
elif self.data:
params.append(f'data={self.data.hex()}')
return '<'+' '.join(params)+'>'
def get_type(self) -> int:
return self.__class__.TYPE
class CmdIncomingMessage(CmdMessage):
@staticmethod
@abstractmethod
def from_packed_data(cls, data: bytes, seq: Optional[int] = None):
pass
@abstractmethod
def _repr_fields(self) -> ReprDict:
pass
class CmdOutgoingMessage(CmdMessage):
@abstractmethod
def pack_data(self) -> bytes:
return b''
class ModeMessage(CmdOutgoingMessage, CmdIncomingMessage):
TYPE = 1
pt: PowerType
def __init__(self, power_type: PowerType, seq: Optional[int] = None):
super().__init__(seq)
self.pt = power_type
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> ModeMessage:
assert len(data) == 1, 'data size expected to be 1'
mode, = struct.unpack('B', data)
return ModeMessage(PowerType(mode), seq=seq)
def pack_data(self) -> bytes:
return self.pt.value.to_bytes(1, byteorder='little')
def _repr_fields(self) -> ReprDict:
return {'mode': self.pt.name}
class TargetTemperatureMessage(CmdOutgoingMessage, CmdIncomingMessage):
temperature: int
TYPE = 2
def __init__(self, temp: int, seq: Optional[int] = None):
super().__init__(seq)
self.temperature = temp
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> TargetTemperatureMessage:
assert len(data) == 2, 'data size expected to be 2'
nat, frac = struct.unpack('BB', data)
temp = int(nat + (frac / 100))
return TargetTemperatureMessage(temp, seq=seq)
def pack_data(self) -> bytes:
return bytes([self.temperature, 0])
def _repr_fields(self) -> ReprDict:
return {'temperature': self.temperature}
class PingMessage(CmdIncomingMessage, CmdOutgoingMessage):
TYPE = 255
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> PingMessage:
assert len(data) == 0, 'no data expected'
return PingMessage(seq=seq)
def pack_data(self) -> bytes:
return b''
def _repr_fields(self) -> ReprDict:
return {}
# This is the first protocol message. Sent by a client.
# Kettle usually ACKs this, but sometimes i don't get any ACK and the very next message is HandshakeResponseMessage.
class HandshakeMessage(CmdMessage):
TYPE = 0
def encrypt(self,
outkey: bytes,
inkey: bytes,
token: bytes,
pubkey: bytes):
cipher = ciphers.Cipher(algorithms.AES(outkey), modes.CBC(inkey))
encryptor = cipher.encryptor()
ciphertext = bytearray()
ciphertext.extend(encryptor.update(token))
ciphertext.extend(encryptor.finalize())
pld = bytearray()
pld.append(0)
pld.extend(pubkey)
pld.extend(ciphertext)
self.frame.setpayload(pld)
# Kettle either sends this right after the handshake, of first it ACKs the handshake then sends this.
class HandshakeResponseMessage(CmdIncomingMessage):
TYPE = 0
protocol: int
fw_major: int
fw_minor: int
mode: int
token: bytes
def __init__(self,
protocol: int,
fw_major: int,
fw_minor: int,
mode: int,
token: bytes,
seq: Optional[int] = None):
super().__init__(seq)
self.protocol = protocol
self.fw_major = fw_major
self.fw_minor = fw_minor
self.mode = mode
self.token = token
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> HandshakeResponseMessage:
protocol, fw_major, fw_minor, mode = struct.unpack('<HBBB', data[:5])
return HandshakeResponseMessage(protocol, fw_major, fw_minor, mode, token=data[5:], seq=seq)
def _repr_fields(self) -> ReprDict:
return {
'protocol': self.protocol,
'fw': f'{self.fw_major}.{self.fw_minor}',
'mode': self.mode,
'token': self.token.hex()
}
# Apparently, some hardware info.
# On the other hand, if you look at com.syncleiot.iottransport.commands.CmdHardware, its mqtt topic says "mcu_firmware".
# My device returns 1.1.1. The kettle uses on ESP8266 ESP-12F MCU under the hood (or, more precisely, under a piece of
# cheap plastic), so maybe 1.1.1 is some MCU ROM version.
class DeviceHardwareMessage(CmdIncomingMessage):
TYPE = 143 # -113
hw: List[int]
def __init__(self, hw: List[int], seq: Optional[int] = None):
super().__init__(seq)
self.hw = hw
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> DeviceHardwareMessage:
assert len(data) == 3, 'invalid data size, expected 3'
hw = list(struct.unpack('<BBB', data))
return DeviceHardwareMessage(hw, seq=seq)
def _repr_fields(self) -> ReprDict:
return {'device_hardware': '.'.join(map(str, self.hw))}
# This message is sent by kettle right after the HandshakeMessageResponse.
# The diagnostic data is supposed to be sent to vendor, which we, obviously, not going to do.
# So just ACK and skip it.
class DeviceDiagnosticMessage(CmdIncomingMessage):
TYPE = 145 # -111
diag_data: bytes
def __init__(self, diag_data: bytes, seq: Optional[int] = None):
super().__init__(seq)
self.diag_data = diag_data
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> DeviceDiagnosticMessage:
return DeviceDiagnosticMessage(diag_data=data, seq=seq)
def _repr_fields(self) -> ReprDict:
return {'diag_data': self.diag_data.hex()}
class SimpleBooleanMessage(ABC, CmdIncomingMessage):
value: bool
def __init__(self, value: bool, seq: Optional[int] = None):
super().__init__(seq)
self.value = value
@classmethod
def from_packed_data(cls, data: bytes, seq: Optional[int] = None):
assert len(data) == 1, 'invalid data size, expected 1'
enabled, = struct.unpack('<B', data)
return cls(value=enabled == 1, seq=seq)
@abstractmethod
def _repr_fields(self) -> ReprDict:
pass
class AccessControlMessage(SimpleBooleanMessage):
TYPE = 133 # -123
def _repr_fields(self) -> ReprDict:
return {'acl_enabled': self.value}
class ErrorMessage(SimpleBooleanMessage):
TYPE = 7
def _repr_fields(self) -> ReprDict:
return {'error': self.value}
class ChildLockMessage(SimpleBooleanMessage):
TYPE = 30
def _repr_fields(self) -> ReprDict:
return {'child_lock': self.value}
class VolumeMessage(SimpleBooleanMessage):
TYPE = 9
def _repr_fields(self) -> ReprDict:
return {'volume': self.value}
class BacklightMessage(SimpleBooleanMessage):
TYPE = 28
def _repr_fields(self) -> ReprDict:
return {'backlight': self.value}
class CurrentTemperatureMessage(CmdIncomingMessage):
TYPE = 20
current_temperature: int
def __init__(self, temp: int, seq: Optional[int] = None):
super().__init__(seq)
self.current_temperature = temp
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> CurrentTemperatureMessage:
assert len(data) == 2, 'data size expected to be 2'
nat, frac = struct.unpack('BB', data)
temp = int(nat + (frac / 100))
return CurrentTemperatureMessage(temp, seq=seq)
def pack_data(self) -> bytes:
return bytes([self.current_temperature, 0])
def _repr_fields(self) -> ReprDict:
return {'current_temperature': self.current_temperature}
class UnknownMessage(CmdIncomingMessage):
type: Optional[int]
data: bytes
def __init__(self, data: bytes, **kwargs):
super().__init__(**kwargs)
self.type = None
self.data = data
@classmethod
def from_packed_data(cls, data: bytes, seq=0) -> UnknownMessage:
return UnknownMessage(data, seq=seq)
def set_type(self, type: int):
self.type = type
def get_type(self) -> int:
return self.type
def _repr_fields(self) -> ReprDict:
return {
'type': self.type,
'data': self.data.hex()
}
class WrappedMessage:
_message: Message
_handler: Optional[callable]
_validator: Optional[callable]
_logger: Optional[logging.Logger]
_phase: MessagePhase
_phase_update_time: float
def __init__(self,
message: Message,
handler: Optional[callable] = None,
validator: Optional[callable] = None,
ack=False):
self._message = message
self._handler = handler
self._validator = validator
self._logger = None
self._phase = MessagePhase.WAITING
self._phase_update_time = 0
if not validator and ack:
self._validator = lambda m: isinstance(m, AckMessage)
def setlogger(self, logger: logging.Logger):
self._logger = logger
def validate(self, message: Message):
if not self._validator:
return True
return self._validator(message)
def call(self, *args, error_message: str = None) -> None:
if not self._handler:
return
try:
self._handler(*args)
except Exception as exc:
logger = self._logger or logging.getLogger(self.__class__.__name__)
logger.error(f'{error_message}, see exception below:')
logger.exception(exc)
@property
def phase(self) -> MessagePhase:
return self._phase
@phase.setter
def phase(self, phase: MessagePhase):
self._phase = phase
self._phase_update_time = 0 if phase == MessagePhase.WAITING else time.time()
@property
def phase_update_time(self) -> float:
return self._phase_update_time
@property
def message(self) -> Message:
return self._message
@property
def id(self) -> int:
return self._message.id
@property
def seq(self) -> int:
return self._message.seq
@seq.setter
def seq(self, seq: int):
self._message.seq = seq
def __repr__(self):
return f'<{__name__}.{self.__class__.__name__} message={self._message.__repr__()}>'
# Connection stuff
# Well, strictly speaking, as it's UDP, there's no connection, but who cares.
# ---------------------------------------------------------------------------
class IncomingMessageListener:
@abstractmethod
def incoming_message(self, message: Message) -> Optional[Message]:
pass
class ConnectionStatus(Enum):
NOT_CONNECTED = auto()
CONNECTING = auto()
CONNECTED = auto()
RECONNECTING = auto()
DISCONNECTED = auto()
class ConnectionStatusListener:
@abstractmethod
def connection_status_updated(self, status: ConnectionStatus):
pass
class UDPConnection(threading.Thread, ConnectionStatusListener):
inseq: int
outseq: int
source_port: int
device_addr: str
device_port: int
device_token: bytes
device_pubkey: bytes
interrupted: bool
response_handlers: Dict[int, WrappedMessage]
outgoing_queue: List[WrappedMessage]
pubkey: Optional[bytes]
encinkey: Optional[bytes]
encoutkey: Optional[bytes]
inc_listeners: List[IncomingMessageListener]
conn_listeners: List[ConnectionStatusListener]
outgoing_time: float
outgoing_time_1st: float
incoming_time: float
status: ConnectionStatus
reconnect_tries: int
read_timeout: int
_addr_lock: threading.Lock
_iml_lock: threading.Lock
_csl_lock: threading.Lock
_st_lock: threading.Lock
def __init__(self,
addr: Union[IPv4Address, IPv6Address],
port: int,
device_pubkey: bytes,
device_token: bytes,
read_timeout: int = 1):
super().__init__()
self._logger = logging.getLogger(f'{__name__}.{self.__class__.__name__} <{hex(id(self))}>')
self.setName(self.__class__.__name__)
self.inseq = 0
self.outseq = 0
self.source_port = random.randint(1024, 65535)
self.device_addr = str(addr)
self.device_port = port
self.device_token = device_token
self.device_pubkey = device_pubkey
self.outgoing_queue = []
self.response_handlers = {}
self.interrupted = False
self.outgoing_time = 0
self.outgoing_time_1st = 0
self.incoming_time = 0
self.inc_listeners = []
self.conn_listeners = [self]
self.status = ConnectionStatus.NOT_CONNECTED
self.reconnect_tries = 0
self.read_timeout = read_timeout
self._iml_lock = threading.Lock()
self._csl_lock = threading.Lock()
self._addr_lock = threading.Lock()
self._st_lock = threading.Lock()
self.pubkey = None
self.encinkey = None
self.encoutkey = None
def connection_status_updated(self, status: ConnectionStatus):
# self._logger.info(f'connection_status_updated: status = {status}')
with self._st_lock:
# self._logger.debug(f'connection_status_updated: lock acquired')
self.status = status
if status == ConnectionStatus.RECONNECTING:
self.reconnect_tries += 1
if status in (ConnectionStatus.CONNECTED, ConnectionStatus.NOT_CONNECTED, ConnectionStatus.DISCONNECTED):
self.reconnect_tries = 0
def _cleanup(self):
# erase outgoing queue
for wm in self.outgoing_queue:
wm.call(False,
error_message=f'_cleanup: exception while calling cb(False) on message {wm.message}')
self.outgoing_queue = []
self.response_handlers = {}
# reset timestamps
self.incoming_time = 0
self.outgoing_time = 0
self.outgoing_time_1st = 0
self._logger.debug('_cleanup: done')
def set_address(self, addr: Union[IPv4Address, IPv6Address], port: int):
with self._addr_lock:
if self.device_addr != str(addr) or self.device_port != port:
self.device_addr = str(addr)
self.device_port = port
self._logger.info(f'updated device network address: {self.device_addr}:{self.device_port}')
def set_device_pubkey(self, pubkey: bytes):
if self.device_pubkey.hex() != pubkey.hex():
self._logger.info(f'device pubkey has changed (old={self.device_pubkey.hex()}, new={pubkey.hex()})')
self.device_pubkey = pubkey
self._notify_cs(ConnectionStatus.RECONNECTING)
def get_address(self) -> Tuple[str, int]:
with self._addr_lock:
return self.device_addr, self.device_port
def add_incoming_message_listener(self, listener: IncomingMessageListener):
with self._iml_lock:
if listener not in self.inc_listeners:
self.inc_listeners.append(listener)
def add_connection_status_listener(self, listener: ConnectionStatusListener):
with self._csl_lock:
if listener not in self.conn_listeners:
self.conn_listeners.append(listener)
def _notify_cs(self, status: ConnectionStatus):
# self._logger.debug(f'_notify_cs: status={status}')
with self._csl_lock:
for obj in self.conn_listeners:
# self._logger.debug(f'_notify_cs: notifying {obj}')
obj.connection_status_updated(status)
def _prepare_keys(self):
# generate key pair
privkey = X25519PrivateKey.generate()
self.pubkey = bytes(reversed(privkey.public_key().public_bytes(encoding=srlz.Encoding.Raw,
format=srlz.PublicFormat.Raw)))
# generate shared key
device_pubkey = X25519PublicKey.from_public_bytes(
bytes(reversed(self.device_pubkey))
)
shared_key = bytes(reversed(
privkey.exchange(device_pubkey)
))
# in/out encryption keys
digest = hashes.Hash(hashes.SHA256())
digest.update(shared_key)
shared_sha256 = digest.finalize()
self.encinkey = shared_sha256[:16]
self.encoutkey = shared_sha256[16:]
self._logger.info('encryption keys have been created')
def _handshake_callback(self, r: MessageResponse):
# if got error for our HandshakeMessage, reset everything and try again
if r is False:
# self._logger.debug('_handshake_callback: set status=RECONNETING')
self._notify_cs(ConnectionStatus.RECONNECTING)
else:
# self._logger.debug('_handshake_callback: set status=CONNECTED')
self._notify_cs(ConnectionStatus.CONNECTED)
def run(self):
self._logger.info('starting server loop')
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(('0.0.0.0', self.source_port))
sock.settimeout(self.read_timeout)
while not self.interrupted:
with self._st_lock:
status = self.status
if status in (ConnectionStatus.DISCONNECTED, ConnectionStatus.RECONNECTING):
self._cleanup()
if status == ConnectionStatus.DISCONNECTED:
break
# no activity for some time means connection is broken
fail = False
fail_path = 0
if self.incoming_time > 0 and time.time() - self.incoming_time >= DISCONNECT_TIMEOUT:
fail = True
fail_path = 1
elif self.outgoing_time_1st > 0 and self.incoming_time == 0 and time.time() - self.outgoing_time_1st >= DISCONNECT_TIMEOUT:
fail = True
fail_path = 2
if fail:
self._logger.debug(f'run: setting status=RECONNECTING because of long inactivity, fail_path={fail_path}')
self._notify_cs(ConnectionStatus.RECONNECTING)
# establishing a connection
if status in (ConnectionStatus.RECONNECTING, ConnectionStatus.NOT_CONNECTED):
if status == ConnectionStatus.RECONNECTING and self.reconnect_tries >= 3:
self._notify_cs(ConnectionStatus.DISCONNECTED)
continue
self._reset_outseq()
self._prepare_keys()
# shake the imaginary kettle's hand
wrapped = WrappedMessage(HandshakeMessage(),
handler=self._handshake_callback,
validator=lambda m: isinstance(m, (AckMessage, HandshakeResponseMessage)))
self.enqueue_message(wrapped, prepend=True)
self._notify_cs(ConnectionStatus.CONNECTING)
# pick next (wrapped) message to send
wm = self._get_next_message() # wm means "wrapped message"
if wm:
one_shot = isinstance(wm.message, (AckMessage, NakMessage))
if not isinstance(wm.message, (AckMessage, NakMessage)):
old_seq = wm.seq
wm.seq = self.outseq
self._set_response_handler(wm, old_seq=old_seq)
elif wm.seq is None:
# ack/nak is a response to some incoming message (and it must have the same seqno that incoming
# message had)
raise RuntimeError(f'run: seq must be set for {wm.__class__.__name__}')
self._logger.debug(f'run: sending message: {wm.message}, one_shot={one_shot}, phase={wm.phase}')
encrypted = False
try:
wm.message.encrypt(outkey=self.encoutkey, inkey=self.encinkey,
token=self.device_token, pubkey=self.pubkey)
encrypted = True
except ValueError as exc:
# handle "ValueError: Invalid padding bytes."
self._logger.error('run: failed to encrypt the message.')
self._logger.exception(exc)
if encrypted:
buf = wm.message.frame.pack()
# self._logger.debug(f'run: raw data to be sent: {buf.hex()}')
# sending the first time
if wm.phase == MessagePhase.WAITING:
sock.sendto(buf, self.get_address())
# resending
elif wm.phase == MessagePhase.SENT:
left = RESEND_ATTEMPTS
while left > 0:
sock.sendto(buf, self.get_address())
left -= 1
if left > 0:
time.sleep(0.05)
if one_shot or wm.phase == MessagePhase.SENT:
wm.phase = MessagePhase.DONE
else:
wm.phase = MessagePhase.SENT
now = time.time()
self.outgoing_time = now
if not self.outgoing_time_1st:
self.outgoing_time_1st = now
# receiving data
try:
data = sock.recv(4096)
self._handle_incoming(data)
except (TimeoutError, socket.timeout):
pass
self._logger.info('bye...')
def _get_next_message(self) -> Optional[WrappedMessage]:
message = None
lpfx = '_get_next_message:'
remove_list = []
for wm in self.outgoing_queue:
if wm.phase == MessagePhase.DONE:
if isinstance(wm.message, (AckMessage, NakMessage, PingMessage)) or time.time() - wm.phase_update_time >= MESSAGE_QUEUE_REMOVE_DELAY:
remove_list.append(wm)
continue
message = wm
break
for wm in remove_list:
self._logger.debug(f'{lpfx} rm path: removing id={wm.id} seq={wm.seq}')
# clear message handler
if wm.seq in self.response_handlers:
self.response_handlers[wm.seq].call(
False, error_message=f'{lpfx} rm path: error while calling callback for seq={wm.seq}')
del self.response_handlers[wm.seq]
# remove from queue
try:
self.outgoing_queue.remove(wm)
except ValueError as exc:
self._logger.error(f'{lpfx} rm path: removing from outgoing_queue raised an exception: {str(exc)}')
# ping pong
if not message and self.outgoing_time_1st != 0 and self.status == ConnectionStatus.CONNECTED:
now = time.time()
out_delta = now - self.outgoing_time
in_delta = now - self.incoming_time
if max(out_delta, in_delta) > PING_FREQUENCY:
self._logger.debug(f'{lpfx} no activity: in for {in_delta:.2f}s, out for {out_delta:.2f}s, time to ping the damn thing')
message = WrappedMessage(PingMessage(), ack=True)
# add it to outgoing_queue in order to be aggressively resent in future (if needed)
self.outgoing_queue.insert(0, message)
return message
def _handle_incoming(self, buf: bytes):
try:
incoming_message = Message.from_encrypted(buf, inkey=self.encinkey, outkey=self.encoutkey)
except ValueError as exc:
# handle "ValueError: Invalid padding bytes."
self._logger.error('_handle_incoming: failed to decrypt incoming frame:')
self._logger.exception(exc)
return
self.incoming_time = time.time()
seq = incoming_message.seq
lpfx = f'handle_incoming({incoming_message.id}):'
self._logger.debug(f'{lpfx} received: {incoming_message}')
if isinstance(incoming_message, (AckMessage, NakMessage)):
seq_max = self.outseq
seq_name = 'outseq'
else:
seq_max = self.inseq
seq_name = 'inseq'
self.inseq = seq
if seq < seq_max < 0xfd:
self._logger.debug(f'{lpfx} dropping: seq={seq}, {seq_name}={seq_max}')
return
if seq not in self.response_handlers:
self._handle_incoming_cmd(incoming_message)
return
callback_value = None # None means don't call a callback
handler = self.response_handlers[seq]
if handler.validate(incoming_message):
self._logger.debug(f'{lpfx} response OK')
handler.phase = MessagePhase.DONE
callback_value = incoming_message
self._incr_outseq()
else:
self._logger.warning(f'{lpfx} response is INVALID')
# It seems that we've received an incoming CmdMessage or PingMessage with the same seqno that our outgoing
# message had. Bad, but what can I say, this is quick-and-dirty made UDP based protocol and this sort of
# shit just happens.
# (To be fair, maybe my implementation is not perfect either. But hey, what did you expect from a
# reverse-engineered re-implementation of custom UDP-based protocol that some noname vendor uses for their
# cheap IoT devices? I think _that_ is _the_ definition of shit. At least my implementation is FOSS, which
# is more than you'll ever be able to say about them.)
# All this crapload of code below might not be needed at all, 'cause the protocol uses separate frame seq
# numbers for IN and OUT frames and this situation is not highly likely, as Theresa May could argue.
# After a handshake, a kettle sends us 10 or so CmdMessages, and then either we continuously ping it every
# 3 seconds, or kettle pings us. This in any case widens the gap between inseq and outseq.
# But! the seqno is only 1 byte in size and once it reaches 0xff, it circles back to zero. And that (plus,
# perhaps, some bad luck) gives a chance for a collision.
if handler.phase == MessagePhase.DONE or isinstance(handler.message, HandshakeMessage):
# no more attempts left, returning error back to user
# as to handshake, it cannot fail.
callback_value = False
# else:
# # try resending the message
# handler.phase_reset()
# max_seq = self.outseq
# wait_remap = {}
# for m in self.outgoing_queue:
# if m.seq in self.waiting_for_response:
# wait_remap[m.seq] = (m.seq+1) % 256
# m.set_seq((m.seq+1) % 256)
# if m.seq > max_seq:
# max_seq = m.seq
# if max_seq > self.outseq:
# self.outseq = max_seq % 256
# if wait_remap:
# waiting_new = {}
# for old_seq, new_seq in wait_remap.items():
# waiting_new[new_seq] = self.waiting_for_response[old_seq]
# self.waiting_for_response = waiting_new
if isinstance(incoming_message, (PingMessage, CmdIncomingMessage)):
# handle incoming message as usual, as we need to ack/nak it anyway
self._handle_incoming_cmd(incoming_message)
if callback_value is not None:
handler.call(callback_value,
error_message=f'{lpfx} error while calling callback for msg id={handler.message.id} seq={seq}')
del self.response_handlers[seq]
def _handle_incoming_cmd(self, incoming_message: Message):
if isinstance(incoming_message, (AckMessage, NakMessage)):
self._logger.debug(f'_handle_incoming_cmd({incoming_message.id}, seq={incoming_message.seq}): it\'s {incoming_message.__class__.__name__}, ignoring')
return
replied = False
with self._iml_lock:
for f in self.inc_listeners:
retval = safe_callback_call(f.incoming_message, incoming_message,
logger=self._logger,
error_message=f'_handle_incoming_cmd({incoming_message.id}, seq={incoming_message.seq}): error while calling message listener')
if isinstance(retval, Message):
if isinstance(retval, (AckMessage, NakMessage)):
retval.seq = incoming_message.seq
self.enqueue_message(WrappedMessage(retval), prepend=True)
replied = True
break
else:
raise RuntimeError('are you sure your response is correct? only ack/nak are allowed')
if not replied:
self.enqueue_message(WrappedMessage(AckMessage(incoming_message.seq)), prepend=True)
def enqueue_message(self, wrapped: WrappedMessage, prepend=False):
self._logger.debug(f'enqueue_message: {wrapped.message}')
if not prepend:
self.outgoing_queue.append(wrapped)
else:
self.outgoing_queue.insert(0, wrapped)
def _set_response_handler(self, wm: WrappedMessage, old_seq=None):
if old_seq in self.response_handlers:
del self.response_handlers[old_seq]
seq = wm.seq
assert seq is not None, 'seq is not set'
if seq in self.response_handlers:
self._logger.debug(f'_set_response_handler(seq={seq}): handler is already set, cancelling it')
self.response_handlers[seq].call(False,
error_message=f'_set_response_handler({seq}): error while calling old callback')
self.response_handlers[seq] = wm
def _incr_outseq(self) -> None:
self.outseq = (self.outseq + 1) % 256
def _reset_outseq(self):
self.outseq = 0
self._logger.debug(f'_reset_outseq: set 0')
MessageResponse = Union[Message, bool]